Abstract

Recreational water quality, as measured by culturable fecal indicator bacteria (FIB), may be influenced by persistent populations of these bacteria in local sands or wrack, in addition to varied fecal inputs from human and/or animal sources. In this study, pyrosequencing was used to generate short sequence tags of the 16S hypervariable region ribosomal DNA from shallow water samples and from sand samples collected at the high tide line and at the intertidal water line at sites with and without FIB exceedance events. These data were used to examine the sand and water bacterial communities to assess the similarity between samples, and to determine the impact of water quality exceedance events on the community composition. Sequences belonging to a group of bacteria previously identified as alternative fecal indicators were also analyzed in relationship to water quality violation events. We found that sand and water samples hosted distinctly different overall bacterial communities, and there was greater similarity in the community composition between coastal water samples from two distant sites. The dissimilarity between high tide and intertidal sand bacterial communities, although more similar to each other than to water, corresponded to greater tidal range between the samples. Within the group of alternative fecal indicators greater similarity was observed within sand and water from the same site, likely reflecting the anthropogenic contribution at each beach. This study supports the growing evidence that community-based molecular tools can be leveraged to identify the sources and potential impact of fecal pollution in the environment, and furthermore suggests that a more diverse bacterial community in beach sand and water may reflect a less contaminated site and better water quality.

Highlights

  • Fecal indicator bacteria are increasingly well-documented in sands at a range of freshwater and marine beaches of varied climates [1,2,3,4,5], bringing into question whether their ability to persist in the surfzone environment compromises their utility as proxies for the risk of contact with pathogens in recreational waters

  • Community Diversity and Structure Thirty-nine phyla were represented among the 630,858 total and 2,349 unique bacterial sequence tags recovered from the twenty-four sand and water samples in this study

  • Proteobacteria dominate the sequence tags from water samples regardless of site; within this phylum, the orders Alphaproteobacteria and Gammaproteobacteria contain the majority of sequence tags, which are present in a ratio of approximately 2:1 respectively

Read more

Summary

Introduction

Fecal indicator bacteria are increasingly well-documented in sands at a range of freshwater and marine beaches of varied climates [1,2,3,4,5], bringing into question whether their ability to persist in the surfzone environment compromises their utility as proxies for the risk of contact with pathogens in recreational waters. While recent studies have indicated that water quality and sand quality are linked [24,25], we have a limited understanding about how the complex environmental bacterial communities in sands, which may include fecal indicators and pathogens, are related to the putative pollution events that are detected through routine culture-based water quality monitoring. We especially lack information about how episodic water quality violations affect the bacteriological quality of surfzone sands, and whether signatures of human contamination can be identified in the sand during water quality violation events or at other times, which could help us better understand how human contamination persists in the environment and impacts humans [26]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call