Abstract

In this article, projective synchronization of double–scroll attractor of an extended Bonoffer–van der Pol oscillator (BVPO) is considered via the backstepping and active control techniques. In each synchronization scheme, a single control function is designed to achieve projective synchronization between two Bonhoffer–van der Pol oscillator evolving from different initial conditions. To obtain a single control function via the active control, the coefficient of the error dynamics is chosen such that the number of control functions is reduced from three to one, thereby, reducing control function complexity in design. The results show that the transient error dynamics convergence and synchronization time are achieved faster via the backstepping than that of the active control technique. However, the control function obtained via the active control is simpler with a more stable synchronization time and hence, it is more suitable for practical implementation. Numerical simulations are presented to confirm the effectiveness of the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.