Abstract

Autonomic control of blood pressure is essential toward maintenance of cerebral perfusion during standing, failure of which could lead to fainting. Long-term exposure to microgravity deteriorates autonomic control of blood pressure. Consequently, astronauts experience orthostatic intolerance on their return to gravitational environment. Ground-based studies suggest sporadic training in artificial hypergravity can mitigate spaceflight deconditioning. In this regard, short-arm human centrifuge (SAHC), capable of creating artificial hypergravity of different g-loads, provides an auspicious training tool. Here, we compare autonomic control of blood pressure during centrifugation creating 1-g and 2-g at feet with standing in natural gravity. Continuous blood pressure was acquired simultaneously from 13 healthy participants during supine baseline, standing, supine recovery, centrifugation of 1-g, and 2-g, from which heart rate (RR) and systolic blood pressure (SBP) were derived. The autonomic blood pressure regulation was assessed via spectral analysis of RR and SBP, spontaneous baroreflex sensitivity, and non-linear heart rate and blood pressure causality (RR↔SBP). While majority of these blood pressure regulatory indices were significantly different (p < 0.05) during standing and 2-g centrifugation compared to baseline, no change (p > 0.05) was observed in the same indices during 2-g centrifugation compared to standing. The findings of the study highlight the capability of artificial gravity (2-g at feet) created via SAHC toward evoking blood pressure regulatory controls analogous to standing, therefore, a potential utility toward mitigating deleterious effects of microgravity on cardiovascular performance and minimizing post-flight orthostatic intolerance in astronauts.

Highlights

  • Right from birth, humans experience gravity, which pulls the human body toward the earth with a force equivalent to the product of the body mass and the gravitational acceleration, i.e., 9.8 m/s2 (Antonutto and di Prampero, 2003)

  • Stand test or application of centrifugation inflicted no change in systolic blood pressure (SBP) (p = 0.13), diastolic blood pressure (DBP) (p = 0.27), or mean arterial pressure (MAP) (p = 0.28)

  • Cardiovascular adaptation to microgravity impairs autonomic control of blood pressure, astronauts are susceptible to orthostatic intolerance on return to gravitational environment

Read more

Summary

Introduction

Right from birth, humans experience gravity, which pulls the human body toward the earth with a force equivalent to the product of the body mass and the gravitational acceleration, i.e., 9.8 m/s2 (Antonutto and di Prampero, 2003). Cardiovascular adaptation to microgravity can have detrimental effects on the autonomic control of blood pressure upon return to gravitational environment (Hargens et al, 2013; Tanaka et al, 2016). The success of envisioned Mars exploration would entail frequent long-duration spaceflight in the future (Manzey, 2004; Baisden et al, 2008; Clément et al, 2016). To this end, profound investigation of potential countermeasures is warranted to mitigate the adverse effects of microgravity on physiological performance to facilitate healthy life for astronauts on their return to Earth (Clément et al, 2016)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call