Abstract

Au catalysts supported on mesoporous silica and titania supports were synthesized and tested for the oxidation of CO. Two approaches were used to prepare the silica-supported catalysts utilizing complexing triamine ligands which resulted in mesoporous silica with wormhole and hexagonal structures. The use of triamine ligands is the key for the formation of uniformly sized 2–3 nm Au nanoparticles in the silica pores. On mesoporous titania, high gold dispersions were obtained without the need of a functional ligand. Au supported on titania exhibited a much higher activity for CO oxidation, even though the Au particle sizes were essentially identical on the titania and the wormhole silica supports. The results suggest that the presence of 2–3 nm particle size alone is not sufficient to achieve high activity in CO oxidation. Instead, the support may influence the activity through other possible ways including stabilization of active sub-nanometer particles, formation of active oxygen-containing reactant intermediates (such as hydroxyls or O2−), or stabilization of optimal Au structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call