Abstract

BackgroundAtrial flutter (AFL) and atrial fibrillation (AF) are associated with AF-promoting atrial remodeling, but no experimental studies have addressed remodeling with sustained AFL. ObjectivesThis study aimed to define the atrial remodeling caused by sustained atrial flutter (AFL) and/or atrial fibrillation (AF). MethodsIntercaval radiofrequency lesions created a substrate for sustained isthmus-dependent AFL, confirmed by endocavity mapping. Four groups (6 dogs per group) were followed for 3 weeks: sustained AFL; sustained AF (600 beats/min atrial tachypacing); AF superimposed on an AFL substrate (AF+AFLs); sinus rhythm (SR) with an AFL substrate (SR+AFLs; control group). All dogs had atrioventricular-node ablation and ventricular pacemakers at 80 beats/min to control ventricular rate. ResultsMonitoring confirmed spontaneous AFL maintenance >99% of the time in dogs with AFL. At terminal open-chest study, left-atrial (LA) effective refractory period was reduced similarly with AFL, AF+AFLs and AF, while AF vulnerability to extrastimuli increased in parallel. Induced AF duration increased significantly in AF+AFLs and AF, but not AFL. Dogs with AF+AFLs had shorter cycle lengths and substantial irregularity versus dogs with AFL. LA volume increased in AF+AFLs and AF, but not dogs with AFL, versus SR+AFLs. Optical mapping showed significant conduction slowing in AF+AFLs and AF but not AFL, paralleling atrial fibrosis and collagen-gene upregulation. Left-ventricular function did not change in any group. Transcriptomic analysis revealed substantial dysregulation of inflammatory and extracellular matrix-signaling pathways with AF and AF+ALs but not AFL. ConclusionsSustained AFL causes atrial repolarization changes like those in AF but, unlike AF or AF+AFLs, does not induce structural remodeling. These results provide novel insights into AFL-induced remodeling and suggest that early intervention may be important to prevent irreversible fibrosis when AF intervenes in a patient with AFL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call