Abstract

In this paper, the electrical discharge characteristics of plasmas generated in coaxial cylindrical electrodes capacitively powered by a radio-frequency power supply at atmospheric pressure are investigated with respect to helium and argon gases. The electrical discharge parameters, voltage (V), current (I), and power (P), are measured for both helium and argon plasmas, and the electron temperatures and electron densities for them are evaluated by means of the equivalent circuit model and the power balance equation. By comparison of the discharge characteristics of the helium and argon plasmas, it is found that the discrepant macroscopic characteristics of helium and argon plasma, viz., current and voltage characteristics and current and power characteristics, are owed to their own intrinsic microscopic parameters of the helium and argon atoms, such as the first excited energy, the ionization energy, the total cross section, and the atom mass. Furthermore, the influences of the additive gas, oxygen gas, on the electrical discharge characteristics are also investigated in the helium and argon plasmas, which are closely related to the electron temperature of plasmas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.