Abstract

Seventy-four aroma active compounds were observed in Merlot and Cabernet Sauvignon wines produced in California and Australia. Volatiles were sampled using solid phase microextraction and analyzed using time-intensity gas chromatography-olfactometry and gas chromatography-mass spectrometry (GC-MS). The most intense odorants were 3-methyl-1-butanol, 3-hydroxy-2-butanone, octanal, ethyl hexanoate, ethyl 2-methylbutanoate, beta-damascenone, 2-methoxyphenol, 4-ethenyl-2-methoxy-phenol, ethyl 3-methylbutanoate, acetic acid, and 2-phenylethanol. Aroma compounds were classified according to their aroma descriptor similarity and summed into nine distinct categories consisting of fruity, sulfury, caramel/cooked, spicy/peppery, floral, earthy, pungent/chemical, woody, and green/vegetative/fatty. Both Merlot and Cabernet Sauvignon wines were characterized by high fruity, caramel, green, and earthy aroma totals. Although there were distinct quantitative differences between Merlot and Cabernet wines, the relative aroma category profiles of the four wines were similar. Of the 66 volatiles identified by GC-MS, 28 were esters and 19 were minor alcohols. Between 81 and 88% of the total MS total ion chromatogram peak areas from each wine type were produced from only eight compounds: ethanol, ethyl octanoate, ethyl decanoate, ethyl acetate, 3-methyl-1-butanol, ethyl hexanoate, diethyl succinate, and 2-phenylethanol. Merlot wines from both Australia and California contained 4-5 times more ethyl octanoate than Cabernet Sauvignon wines from the same sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call