Abstract

Archaeal and bacterial community structures in heavily oil-contaminated and pristine soils were compared using denaturing gradient gel electrophoresis and 16S rRNA gene libraries. The results showed that archaeal diversity was more complex in the contaminated soil than in the uncontaminated control soil. Archaeal populations in the contaminated soil consisted mainly of Euryarchaeota, with abundant methanogen-like operational taxonomic units (OTUs) and OTUs related to the phylogenetically diverse group, candidate division I, corresponding to rice cluster V. In contrast, only halophilic archaea were found in the pristine soil. Bacterial community structures also differed significantly between the contaminated and pristine soils. More clones from the contaminated soil were related to known hydrocarbon-degrading bacteria, implying that microorganisms with the potential to degrade petroleum were well-established. These results provide further insights into the composition of microbial communities in oil-contaminated soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.