Abstract

Bramwell-Hill (BH) equation is widely adopted for the evaluation of local pulse wave velocity (PWV), primarily for its theoretical association with the vessel's distensibility. Its implementation, however, requires arterial pressure and diameter waveforms simultaneously from a single site. Owing to the challenges associated with such a noninvasive recording, an approximated BH equation is adopted without requiring the entire pressure waveform but only the diastolic and systolic values. The approximated BH method yields a single value of local PWV as opposed to the actual method that provides instantaneous PWV within a cardiac cycle. This study aims to provide the currently lacking insights into how the approximate versus actual BH implementations compare. The study also addresses the pivotal question of which instantaneous value within the cardiac cycle corresponds to the approximated BH. An ex-vivo study was conducted for this purpose, emulating different flow conditions (changing mean and pulse pressures) to vary the local PWV within the range of 4.4 to 8.9 m/s. The results revealed the expected (pressure-dependent) incremental nature of local PWV due to hyper-elastic behavior of the artery, with systolic BH-PWV > diastolic BH-PWV by 13.6%. The approximate BH-PWV was similar to actual BH-PWV obtained from mean pressure level. It further underestimated the systolic, and overestimated the diastolic PWVs by 8.5% and 6.6%, respectively. Clinical Relevance - When estimated BH-PWV estimates are compared to normal values for patient classification or utilized as a reference standard in validation studies these findings become extremely important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call