Abstract
Complete infinite order approximate symmetry and approximate homotopy symmetry classifications of the Cahn–Hilliard equation are performed and the reductions are constructed by an optimal system of one-dimensional subalgebras. Zero order similarity reduced equations are nonlinear ordinary differential equations while higher order similarity solutions can be obtained by solving linear variable coefficient ordinary differential equations. The relationship between two methods for different order are studied and the results show that the approximate homotopy symmetry method is more effective to control the convergence of series solutions than the approximate symmetry one.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.