Abstract

Antioxidant properties of refined and whole wheat flour and their resultant bread were investigated to document the effects of baking. Total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC) were employed to determine the content of ethanol extractable phenolic compounds. HPLC was used to detect the presence of phenolic acids prior to their confirmation using LC-MS/MS. Whole wheat flour showed significantly higher antioxidant activity than refined flour (p < 0.05). There was a significant effect of the bread-making process with the TPC of whole wheat bread (1.50–1.65 mg/g) and white bread (0.79–1.03 mg/g) showing a respective reduction of 28% and 33% of the levels found in whole wheat and refined flour. Similarly, baking decreased DPPH radical scavenging capacity by 32% and 30%. ORAC values, however, indicated that baking increased the antioxidant activities of whole wheat and refined flour by 1.8 and 2.9 times, respectively. HPLC analysis showed an increase of 18% to 35% in ferulic acid after baking to obtain whole and refined wheat bread containing 330.1 and 25.3 µg/g (average), respectively. Whole wheat flour and bread were superior to refined flour and bread in in vitro antioxidant properties.

Highlights

  • IntroductionParts of the health benefits of whole grain flours are attributed to the presence of antioxidants

  • Epidemiological studies have shown that the consumption of whole grains and grain-based products is associated with the reduced risk of oxidative-stress related chronic diseases and age-related disorders, such as cardiovascular diseases, carcinogenesis, type II diabetes and obesity [1].Parts of the health benefits of whole grain flours are attributed to the presence of antioxidants

  • The major phenolic acid found in wheat, was used as a standard

Read more

Summary

Introduction

Parts of the health benefits of whole grain flours are attributed to the presence of antioxidants. In addition to the most common antioxidants, such as vitamin C (tocopherols and tocotrienols), vitamin E and carotenoids [2], grains contain some phyto-antioxidants, including phenolic acids and flavonoids [3]. The most abundant antioxidants in whole grains are phenolic acids, which are highly concentrated in the bran and the germ [2], both of which are removed to obtain refined flour. Phenolic acids exist as free, esterified and insoluble-bound forms [4]. Phenolic compounds present in cereals are primarily ester-linked to cell wall polymers representing 80%–95% of the total amount [6]. The cell wall bound phenolics are alkali labile [7]. Different extraction procedures are needed to obtain free and bound phenolic acids

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.