Abstract

This study presents a comparative analysis of surface characteristics and properties of anodised aluminium cylinders produced by sand casting, permanent mould casting, extrusion, and high pressure die casting. Differences in micro structure and distribution of silicon particles in the aluminium, due to the fabrication method and the silicon content in the alloy, resulted in varying thickness of the oxide layers (mean thicknesses between 7 and 19μm) and surface topography. The oxide layer was unevenly thick for the permanent mould cast and the sand cast cylinders, resulting in a surface with higher plateaus and lower areas. This was more prominent for the sand cast surface. The oxide of the extruded cylinder was thick and even and its surface was smooth. The high pressure die cast surface had an oxide that was very thin and uneven. The surfaces displayed different results in the scratch test due to the variations in the surface structure. For the permanent mould cast and the sand cast surfaces the silicon particles present in the oxide deflected the cracks that were formed during the scratching. This resulted in smaller wear debris. The nanohardness values of the oxides had a large scattering due to the inhomogeneous nature of the oxide layers, with pores and particles. However, the highest nanohardness values were between 5000 and 6000MPa for the four surfaces, which is significantly lower than that of sintered alumina. In the micro abrasion test the wear mechanism for all four surfaces was microcutting resulting in chippings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.