Abstract

BackgroundLife-threatening diseases of critically ill patients are known to derange microcirculation. Automatic analysis of microcirculation would provide a bedside diagnostic tool for microcirculatory disorders and allow immediate therapeutic decisions based upon microcirculation analysis.MethodsAfter induction of general anaesthesia and instrumentation for haemodynamic monitoring, haemorrhagic shock was induced in ten female sheep by stepwise blood withdrawal of 3 × 10 mL per kilogram body weight. Before and after the induction of haemorrhagic shock, haemodynamic variables, samples for blood gas analysis, and videos of conjunctival microcirculation were obtained by incident dark field illumination microscopy. Microcirculatory videos were analysed (1) manually with AVA software version 3.2 by an experienced user and (2) automatically by AVA software version 4.2 for total vessel density (TVD), perfused vessel density (PVD) and proportion of perfused vessels (PPV). Correlation between the two analysis methods was examined by intraclass correlation coefficient and Bland-Altman analysis.ResultsThe induction of haemorrhagic shock decreased the mean arterial pressure (from 87 ± 11 to 40 ± 7 mmHg; p < 0.001); stroke volume index (from 38 ± 14 to 20 ± 5 ml·m−2; p = 0.001) and cardiac index (from 2.9 ± 0.9 to 1.8 ± 0.5 L·min−1·m−2; p < 0.001) and increased the heart rate (from 72 ± 9 to 87 ± 11 bpm; p < 0.001) and lactate concentration (from 0.9 ± 0.3 to 2.0 ± 0.6 mmol·L−1; p = 0.001). Manual analysis showed no change in TVD (17.8 ± 4.2 to 17.8 ± 3.8 mm*mm−2; p = 0.993), whereas PVD (from 15.6 ± 4.6 to 11.5 ± 6.5 mm*mm−2; p = 0.041) and PPV (from 85.9 ± 11.8 to 62.7 ± 29.6%; p = 0.017) decreased significantly. Automatic analysis was not able to identify these changes. Correlation analysis showed a poor correlation between the analysis methods and a wide spread of values in Bland-Altman analysis.ConclusionsAs characteristic changes in microcirculation during ovine haemorrhagic shock were not detected by automatic analysis and correlation between automatic and manual analyses (current gold standard) was poor, the use of the investigated software for automatic analysis of microcirculation cannot be recommended in its current version at least in the investigated model. Further improvements in automatic vessel detection are needed before its routine use.Electronic supplementary materialThe online version of this article (doi:10.1186/s40635-016-0110-5) contains supplementary material, which is available to authorized users.

Highlights

  • Life-threatening diseases of critically ill patients are known to derange microcirculation

  • As characteristic changes in microcirculation during ovine haemorrhagic shock were not detected by automatic analysis and correlation between automatic and manual analyses was poor, the use of the investigated software for automatic analysis of microcirculation cannot be recommended in its current version at least in the investigated model

  • Manual analysis showed a significant decrease in perfused vessel density (PVD) and a significant reduction of proportion of perfused vessels (PPV) in shock compared to baseline, while total vessel density (TVD) remained constant

Read more

Summary

Introduction

Life-threatening diseases of critically ill patients are known to derange microcirculation. Automatic analysis of microcirculation would provide a bedside diagnostic tool for microcirculatory disorders and allow immediate therapeutic decisions based upon microcirculation analysis. Life-threatening diseases of critically ill patients are often accompanied by changes in microvascular perfusion [1,2,3,4,5], and the persistence of microcirculatory abnormalities is associated with poor outcome [3, 4]. Monitoring the microcirculation is a powerful diagnostic tool and may help to better understand the individual problems of patients and the effects of haemodynamic therapy in the critical care setting [8]. A software conducting this analysis automatically could help to establish the microcirculation as a tool for “point-of-care” diagnosis and decision-making

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.