Abstract

BackgroundAmyloidosis leads to deposition of abnormal protein with beta-pleated sheet structure in specific compartments of the affected organs. The histological localization of these amyloid deposits determines the overall survival of the patient.MethodsIn this study we have assessed the histological localization and severity of amyloid deposition in 35 patients with biopsy-proven renal amyloidosis and have compared those to clinical parameters, histo-pathological injury criteria and respective patient outcome. Comparisons were statistically analyzed using thus comparison between the different study groups, which was done using Student t-test and analysis of variance.ResultsWe find that the glomerulus is by far the most commonly and most severely affected renal compartment and patients with severe glomerular amyloidosis advance faster towards end stage renal disease (ESRD) and death, compared to those patients without glomerular amyloid deposits. Patients with severe glomerular amyloidosis showed higher serum creatinine and urine protein levels, while patients with severe vascular amyloidosis showed higher levels of interstitial inflammatory infiltrate.ConclusionIn kidneys affected by amyloidosis, the amyloid proteins are predominantly deposited along vessels, especially the small vessels including glomerular capillary loops. The severity of glomerular amyloid deposition enhances the risk of developing ESRD and increases the risk for premature death.

Highlights

  • Amyloidosis leads to deposition of abnormal protein with beta-pleated sheet structure in specific compartments of the affected organs

  • Review of renal biopsy material included light microscopic evaluation of slides stained with hematoxylin and eosin (H&E), periodic acid Schiff (PAS), Jones silver, Klatskin trichrome, and hematoxylin phloxine saffron (HPS)

  • Our database search resulted in 35 patients with the biopsy diagnosis of renal amyloidosis

Read more

Summary

Introduction

Amyloidosis leads to deposition of abnormal protein with beta-pleated sheet structure in specific compartments of the affected organs. Renal amyloidosis is caused by deposits of abnormally folded protein with a beta pleated sheet structure in the kidney [1]. These insoluble beta-strands form rope–like amyloid fibrils, which are non-branching and 8-10 nm thick. Such deposits of amyloid protein in vital organs, including the kidney, heart, and muscle, lead to organ dysfunction and are associated with significant morbidity and mortality [2]. Distribution of amyloid differs among patients in regard to organ localization.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.