Abstract

BackgroundAMG 416 is a novel peptide agonist of the calcium-sensing receptor (CaSR). This report describes the activity of AMG 416 in two different rodent models of uremia, compared in each case to cinacalcet, an approved therapeutic for secondary hyperparathyroidism (SHPT) in patients with chronic kidney disease on dialysis.MethodsAMG 416 was administered as a single intravenous (IV) bolus in a severe, acute model of renal insufficiency (the “1K1C” model) and plasma parathyroid hormone (PTH) and serum calcium levels were monitored for 24 hours. In a chronic, less severe model of renal dysfunction, the 5/6 nephrectomy (5/6 Nx) model, AMG 416 was administered as a once-daily IV bolus for 28 days. Both studies included a control (vehicle) group and a comparison cinacalcet group (po dosing at 30 mg/kg and 10 mg/kg for the 1K1C and 5/6 Nx studies, respectively).ResultsAdministration of AMG 416 by IV bolus injection into rats with acute renal dysfunction (1K1C model) resulted in a sustained reduction in plasma PTH from the initial elevated values. Following a single IV bolus (0.5 mg/kg), AMG 416 caused a substantial drop in PTH levels which remained approximately 50% below their initial level at 24 hrs. In the same model, oral treatment with cinacalcet (30 mg/kg) resulted in an acute drop in PTH which almost returned to the starting level by 24 hours after dosing. In the 5/6 Nx chronic uremia model, daily IV dosing of AMG 416 over 4 weeks (1 mg/kg) resulted in a sustained reduction in PTH, with approximately 50% of the initial level observed 48 hours post treatment throughout the study. Cinacalcet treatment (10 mg/kg) in the same model resulted in acutely lowered plasma PTH levels which returned to placebo levels by 24 hours post-dose. Consistent with the reductions in plasma PTH, reductions in serum calcium were observed in both AMG 416- and cinacalcet-treated animals.ConclusionsAs a long-acting CaSR agonist suitable for administration by the IV route, AMG 416 is a potential new therapy for the treatment of CKD patients with SHPT receiving hemodialysis.

Highlights

  • AMG 416 is a novel peptide agonist of the calcium-sensing receptor (CaSR)

  • AMG 416 suppresses parathyroid hormone (PTH) in animals with severely compromised renal function To mimic the pathology of renal failure and the associated increases in PTH that are seen in ESRD patients with chronic kidney disease, mineral and bone disorder

  • The 1K1C model is a severe, acute model of renal dysfunction which enables the activity of AMG 416 and cinacalcet to be investigated in the presence of the highly elevated levels of PTH and lack of kidney function typically seen in Chronic kidney disease (CKD)-MBD patients receiving hemodialysis [1]

Read more

Summary

Introduction

AMG 416 is a novel peptide agonist of the calcium-sensing receptor (CaSR). This report describes the activity of AMG 416 in two different rodent models of uremia, compared in each case to cinacalcet, an approved therapeutic for secondary hyperparathyroidism (SHPT) in patients with chronic kidney disease on dialysis. Increased PTH secretion in response to hypocalcemia is mediated by the calcium-sensing receptor (CaSR) a G-protein coupled receptor (GPCR) located on the parathyroid glands [2]. Cinacalcet is an allosteric modulator of the CaSR that sensitizes the receptor to extracellular calcium, resulting in reduced PTH secretion from the parathyroid gland [4]. The decrease in PTH is accompanied by reductions in serum calcium and phosphorus levels in patients with SHPT receiving dialysis [3]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.