Abstract

Assuming a concerted synchronous mechanism with one transition state of the Diels-Alder reactions, the structures of the transition states and the activation energies for the reactions of butadiene and cyclopentadiene with cyanoethylenes were calculated by AM1 and PM3 semiempirical methods. The structural parameters were compared with those obtained by high level Gaussian calculations, whereas the activation energies were compared both with the ab initio calculations and those obtained experimentally. The structural properties calculated with PM3 methods are in general in better agreement with the ab initio calculations. The low level ab initio calculations are in many cases worse than the semiempirical methods. All predicted activation energies with both semiempirical methods are up to 300% higher than the experimental values. The predicted reactivity is also opposite to the experimental data. Only the very high level Gaussian calculations are in good correlation with experimental results. The predicted selectivity of the reaction is also opposite to the experimental facts. Two explanations are offered for this discrepancy: AM1 and PM3 methods cannot handle the calculation of the concerted Diels-Alder transition states and are not recommended to be used for that purpose, or this Diels-Alder reaction is not concerted but is stepwise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.