Abstract

This study compared five different models for evaluating solute transport in a 1250-cm long, saturated and highly heterogeneous soil column. The five models were: the convection-dispersion equation (CDE), the mobile-immobile model (MIM), the convective lognormal transfer function model (CLT), the spatial fractional advection-dispersion equation (FADE) and the continuous time random walk model (CTRW). Each of these models was used to fit the breakthrough curve (BTC) at each distance individually and was also used to fit the BTCs at different distances simultaneously. Dependence of estimated parameters on distance was investigated. The estimated parameters at 200 cm were used to make predictions at subsequent distances. Highly anomalous transport behavior was observed in the column as the BTCs demonstrated significantly irregular shape and long tailing. This study indicated that CDE, CLT and FADE were unable to describe the anomalous BTCs adequately and their parameters changed with transport distance significantly. Compared to CDE, CLT and FADE, MIM better captured the evolution of anomalous BTCs. However, MIM did not explain the distinct BTC tailing satisfactorily. In contrast to MIM, CTRW better simulated the long tails of BTCs. The spreading parameter (beta) of CTRW was close to one and remained approximately constant at different travel distances. To make the comparison of these five models more general beyond the specific transport condition in the soil column, a generic evaluation of the advantages and disadvantages of these five models was presented in terms of their theory framework and a priori knowledge of the model behaviors. (C) 2009 Elsevier B.V. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.