Abstract

In previous work, the author has extended the concept of regular and irregular primes to the setting of arbitrary totally real number fields k0, using the values of the zeta function ζk0 at negative integers as our higher Bernoulli numbers. In the case where k0 is a real field, Siegel presented two formulas for calculating these zeta-values: one using entirely elementary methods and one which is derived from the theory of modular forms. (The author would like to thank Henri Cohen for suggesting an analysis of the second formula.) We briefly discuss several algorithms based on these formulas and compare the running time involved in using them to determine the index of k0-irregularity (more generally, quadratic irregularity) of a prime number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.