Abstract
Microarrays are a powerful tool for comparison and understanding of gene expression levels in healthy and diseased states. The method relies upon the assumption that signals from microarray features are a reflection of relative gene expression levels of the cell types under investigation. It has previously been reported that the classical fluorescent dyes used for microarray technology, Cy3 and Cy5, are not ideal due to the decreased stability and fluorescence intensity of the Cy5 dye relative to the Cy3, such that dye bias is an accepted phenomena necessitating dye swap experimental protocols and analysis of differential dye affects. The incentive to find new fluorophores is based on alleviating the problem of dye bias through synonymous performance between counterpart dyes. Alexa Fluor 555 and Alexa Fluor 647 are increasingly promoted as replacements for CyDye in microarray experiments. Performance relates to the molecular and steric similarities, which will vary for each new pair of dyes as well as the spectral integrity for the specific application required. Comparative analysis of the performance of these two competitive dye pairs in practical microarray applications is warranted towards this end. The findings of our study showed that both dye pairs were comparable but that conventional CyDye resulted in significantly higher signal intensities (P < 0.05) and signal minus background levels (P < 0.05) with no significant difference in background values (P > 0.05). This translated to greater levels of differential gene expression with CyDye than with the Alexa Fluor counterparts. However, CyDye fluorophores and in particular Cy5, were found to be less photostable over time and following repeated scans in microarray experiments. These results suggest that precautions against potential dye affects will continue to be necessary and that no one dye pair negates this need.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.