Abstract

Airborne gravimetry has played a vital role in contributing to our knowledge of the subglacial environment in polar regions. Previous programs have produced extensive gravity data sets in Antarctica, but the resolution and accuracy of the data have been limited. We have evaluated the relative performance and suitability of two different airborne gravimeters for research applications from flight tests over the Canadian Rocky Mountains near Calgary. Survey design, mission profiles, and demands on the performance of an airborne gravimeter are different for the remote polar environment than for most commercial exploration surveys. Both systems, the AIRGrav and GT-1A, can produce higher-resolution data with improved flight efficiency than can the BGM-3 and LaCoste & Romberg gravimeters used in Antarctica. The AIRGrav and GT-1A systems are capable of draped flying of airborne gravity, allowing new applications for polar use. Both systems could provide the academic community with a significant increase in accuracy and horizontal resolution to enable major advances in understanding the subglacial environment. Compared to the GT-1A system, the AIRGrav system has a lower noise level and higher accuracy, and it is less sensitive to changing flight conditions — in particular, vertical accelerations during turbulent flights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.