Abstract

Aircraft and ground-based measurements made during the1995 Australian OASIS field campaign are compared. The aircraft data were recorded during low-level flightsat 6 m above ground level and grid flights at altitudes of between 15 and 65 m, allin unstable atmospheric conditions. The low-level flights revealed an inadequate temperaturesensor response time, a correction for which was determined from subsequent work ina wind tunnel. Aircraft and ground-based measurements of mean wind speed, wind directionand air temperature agree to within 0.2 m s-1, 4° and 0.9 °C respectively.Comparisons between aircraft and ground-based observations of the standarddeviations of vertical velocity, horizontal wind speed, air temperature and specifichumidity have slopes of 0.96, 0.97, 0.92 and 0.99 respectively but the observed scatter isroughly twice the random error expected due to the averaging length of the aircraft data andthe averaging period of the ground-based data. For the low-level flights, the ground-basedand aircraft measurements of sensible and latent heat flux show mean differences of 27 and-25 W m-2 respectively, which reduce to 11 and -4 W m-2 respectivelywhen analysis of aircraft data is limited to areas immediately adjacent to the fluxtowers. For the flights at 15 to 65 m above ground level, the mean differences between theground-based and aircraft measurements of sensible and latent heat flux are -22 and-1 W m-2 respectively and these change to -1 and -7 W m-2 respectively oncethe effect of surface heterogeneity is included. Aircraft and ground-based measurementsof net radiation agree to within 6% at one ground-based site but differ by 20% at a second.Aircraft measurements of friction velocity at 6 m above the ground agree well withground-based data, but those from flights between 15 and 65 m above ground level do not.This is because at these heights the aircraft measurements provide the local shear stress,not the surface shear stress. Overall, the level of agreement allows confidence in the aircraftdata provided due care is taken of instrument response times and differences in thesurfaces sampled by aircraft and ground-based systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call