Abstract

Information presented in this paper is directed to individuals concerned with emissions from combustion of waste crankcase oil for space heating. Studies were performed to characterize gaseous and particulate emissions and vaporizing pot solid residues resulting from the combustion of waste crankcase oil. Two types of waste oil burners were tested. One was a vaporizing oil burner rated at 35.2 kW (120,000 Btu/h heat input), and the other was an air atomizing oil burner rated at 73.3 kW (250,000 Btu/h heat input). Except for NOX and SOX, gaseous emissions were similar to those from conventional distillate oil combustion. NOX and SOX emissions were higher due to higher fuel nitrogen and sulfur concentrations. Waste oil from automotive use showed higher inorganic levels than crankcase oil used for truck engine lubrication. Both burner types discharged high levels of metallic species, but the air atomizing unit had much higher stack emission levels than did the vaporizing pot system. Also, particulate loading levels were an order of magnitude higher for the air atomizing burner than for the vaporizing pot burner when firing the waste oils. However, the vaporizing pot burner generated a waste residue containing the majority of its elemental emissions. Elements which exceeded threshold limit values for one or both heaters were cadmium, chromium, cobalt, copper, iron, lead, nickel, phosphorus, and zinc. However, the nickel and much of chromium appeared to be a sampling artifact caused by the stainless steel sampling system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call