Abstract

Cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol chemical composition were measured simultaneously at an urban site of Guangzhou from July to August 2015 and in January 2016, and the seasonal variations of aerosol activated fractions (NCCN/NCN) as well as their relevant influence factors were further studied accordingly. NCN is generally higher in winter (dry season), whereas NCCN and NCCN/NCN are mostly higher in summer (wet season) instead. In particular, NCCN and NCCN/NCN are much lower at smaller supersaturation levels (SS<0.2) in winter. In spite of similar diurnal variations for NCCN and NCN, NCCN/NCN indicates an opposite tendency, relatively lower at midday, dusk and before midnight. Other than the size of particles as well as their chemical composition, some other factors, such as mass, gas precursors, pollutant transportation, meteorological conditions, etc., also contribute to the variations of NCCN and NCCN/NCN. Particles from the local source or local-oceanic combination source cast influence on CN and CCN significantly, while the pollutants originating from and crossing over distant polluted areas contribute largely to CCN/CN. NCN and NCCN are relatively higher under pollution-free conditions in summertime and polluted conditions in wintertime, but NCCN/NCN is just the opposite. On various polluted conditions, aerosol CCN activities are greatly discrepant between summer and winter, especially during mist or heavy haze periods. The results imply that anthropogenic pollutants exert critical impacts on aerosol CCN activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call