Abstract
A possible increased demand for ATP in salt- tolerant mangrove plants was studied by the comparison of metabolic fates of [8- 14C] adenosine in leaf disks of several mangrove plants and of poplar. In mangrove trees, Rhizophora stylosa, Bruguiera gymnorrhiza, Kandelia candel and Sonneratia alba, 56–92% of [8- 14C]adenosine taken up by leaf disks was converted during 3 h incubation to salvage products, i.e., nucleotides and RNA. Synthesis of nucleotides including ATP was stimulated by salt stress induced by 250 mM NaCl. In leaf disks of Avicennia marina, a mangrove shrub that produces glycinebetaine as compatible solutes, 46% of radioactivity entered salvage products when [8- 14C] adenosine was continuously supplied to the leaf disks. Hydrolysis of adenosine to adenine was extremely active in this mangrove shrub. This is probably due to the high activity of adenosine nucleosidase (EC 3.2.2.7). In leaf disks of another mangrove shrub, Lumnitzera racemosa, only limited amounts of [8- 14C]adenosine were metabolised (< ca. 30% taken up by leaf disks), but synthesis of ATP and ADP was stimulated by salt stress. In Pemphis acidula leaf disks, adenosine salvage activity was low and more than 30% of adenosine was hydrolysed to adenine. In leaf disks of poplar, a non-salt-resistant plant, ca. 40% of [8- 14C] adenosine was converted to salvage products during 3 h of incubation, but the rate was slightly reduced by treatment with 250 mM NaCl. The present results suggest that large mangrove trees generally have efficient adenosine salvage ability, which is stimulated by salt. Lesser salvage activity is found in small size mangrove shrubs, although salt generally still enhances salvage activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.