Abstract
This study presents a novel deep neural network–based method for fault detection in induction motors. The focus was on identifying five types of mechanical cases: normal operation, shaft/load breakage, misalignment, mounting bolt looseness, and cooling fan problems. To increase the realism of the results, a laboratory-collected dataset of stereo microphone recordings was augmented with real factory noise. The audio data was transformed into image data using Mel-frequency cepstral coefficients as the feature extraction method and then processed with image-based classifiers. A comparison was made among 12 different networks in terms of accuracy and number of parameters, revealing that Mobilenet_v2, EfficientNetV2B0, and NASNetMobile had the best performance in terms of both network size and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.