Abstract

Chitosan is a biodegradable cationic polymer that may be a potential substitute for aluminum salts in water treatment systems. In our study, we compared the coagulation performances of chitosan with those of coagulant mixtures of chitosan and aluminum sulfate and chitosan and poly-aluminum chloride, respectively. The coagulation efficiency was evaluated in terms of coagulant dosage, solution pH, settling velocity of flocs, floc diameter, and water turbidity. The optimum dosages for acid-soluble and water-soluble chitosan required for removal of a bentonite suspension (100 NTU) were only 1.25 and 1.50 mg/l, respectively, at a respective efficiency of 99.2% and 95.8%. The optimal dosage range for water-soluble chitosan was broader than that for acid-soluble chitosan. The coagulation of bentonite decreased with increasing pH when acid-soluble chitosan was the coagulant. In contrast, the coagulation efficiency of bentonite was not affected at pH 5–9 when water-soluble chitosan was the coagulant. The mixing of chitosan with alum or PAC in a 1:1 mass ratio significantly improved the coagulation process in terms of preventing the occurrence of re-stabilization. The highest floc settling velocity occurred at a dosage of 5–6 mg/l of the coagulant mixtures, which was also the highest coagulation efficiency. Given the relatively high cost of chitosan and the good coagulation performance of the coagulant mixtures, we suggest that a 1:1 mass ratio of chitosan mixed with alum or PAC may be an alternative method to the use of pure chitosan in water treatment systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call