Abstract

Modeling and migration couple is one of the most important steps in seismic data processing and interpretation. Absorbing boundary conditions used in the modeling were studied with the wave-equation by different authors. In this study, reflection coefficient analyses of recent solutions are compared to each other for the different incident angles of seismic waves to the modeling boundaries. According to the reflection coefficients correlation, the A3 condition is the most appropriate solution which greatly reduces artificial reflections from the boundaries. However, multi-transmitting Formula is better for relatively high angles between 32–58° with the usage of a special parameter. On the contrary, this formula is not an appropriate condition for angles lower than 32°, although it allows setting the boundary at any preferred angle. Considering that most of the boundaries are set in low angles, A3 solution is still most preferential condition. In this study, it is also aimed to find out the optimum grid intervals for minimizing the ill-posedness arose from the combination of the 45° finite difference migration equation and the B 2 absorbing boundary condition for migration. Appropriate values are determined as ωΔx = 0.2 and ωΔz = 0.4 or neighbouring coarser values. It is also concluded that finer mesh spacing can increase the ill-posedness, in contrast to existence of some fine grid size values providing well-posedness. In addition, ill-posedness is obviously standard after ωΔ x = 0.6 for all values of ωΔ z.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.