Abstract

This study aimed to determine the absorbed doses in the tumoral-liver and non-tumoral liver of hepatocellular carcinoma (HCC) patients undergoing radioembolization with Yttrium-90 (90Y) resin microspheres, and compared with those derived from 99mTc-MAA using the partition model. A total of 42 HCC patients (28 males and 14 females, mean age 65 ± 11.51years) who received 45 treatment sessions with 90Y-microspheres between 2016 and 2021 were included. Pre-treatment 99mTc-MAA and post-treatment 90Y-bremsstrahlung SPECT/CT were acquired for each patient. Semi-automated segmentation of regions of interest (ROIs) was performed using MIM Encore software to determine the tumor-liver ratio (TLR) encompassing the liver volume, tumoral-liver, and lungs, and verified by both nuclear medicine physician and interventional radiologist. A partition dosimetry model was used to estimate the administered activity of 90Y-microspheres and the absorbed doses to the tumoral-liver and non-tumoral liver. The student's paired t test and Bland-Altman plot were used for the statistical analysis. The mean TLR values obtained from 99mTc-MAA SPECT/CT and 90Y-bremsstrahlung SPECT/CT were 4.78 ± 3.51 and 2.73 ± 1.18, respectively. The mean planning administered activity of 90Y-microspheres based on 99mTc-MAA SPECT/CT was 1.56 ± 0.80GBq, while the implanted administered activity was 2.53 ± 1.23GBq (p value < 0.001). The mean absorbed doses in the tumoral-liver estimated from 99mTc-MAA and 90Y-bremsstrahlung SPECT/CT were 127.44 ± 4.36Gy and 135.98 ± 6.30Gy, respectively. The corresponding mean absorbed doses in the non-tumoral liver were 34.61 ± 13.93Gy and 55.04 ± 16.36Gy. This study provides evidence that the administered activity of 90Y-microspheres, as estimated from 90Y-bremsstrahlung SPECT/CT, was significantly higher than that estimated from 99mTc-MAA SPECT/CT resulted in increased absorbed doses in both the tumoral-liver and non-tumoral liver. However, 99mTc-MAA SPECT/CT remains a valuable planning tool for predicting the distribution of 90Y-microspheres in liver cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.