Abstract

The method of magnitude estimation is used in psychophysical studies to obtain numerical values for the intensity of perception of environmental stresses (e.g., noise and vibration). The exponent in a power function relating the subjective magnitude of a stimulus (e.g., the degree of discomfort) to the physical magnitude of the stimulus shows the rate of growth of sensations with increasing stimulus magnitude. When judging noise and vibration, there is no basis for deciding whether magnitude estimation should be performed with a reference stimulus (i.e., relative magnitude estimation, RME) or without a reference stimulus (i.e., absolute magnitude estimation, AME). Twenty subjects rated the discomfort caused by thirteen magnitudes of whole-body vertical vibration and 13 levels of noise, by both RME and AME on three occasions. There were high correlations between magnitude estimates of discomfort and the magnitudes of vibration and noise. Both RME and AME provided rates of growth of discomfort with high consistency over the three repetitions. When judging noise, RME was more consistent than AME, with less inter-subject variability in the exponent, ns. When judging vibration, RME was also more consistent than AME, but with greater inter-subject variability in the exponent, nv. When judging vibration, AME may be beneficial because sensations caused by the RME reference stimulus may differ (e.g., occur in a different part of the body) from the sensations caused by the stimuli being judged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call