Abstract

Canonical variational transition-state theory (CVTST) is used to compare H + CH3 and H + diamond {111} association rate constants calculated from the Brenner empirical potential function and molecular anharmonic potentials written with switching (MAPS) functions. Previous work [J. Am. Chem. Soc. 1987, 109, 2916; J. Chem. Phys. 1994, 101, 2476] has shown that the MAPS functions, derived from ab initio calculations, give rate constants in agreement with experiment. For the 300−2000 K temperature range, the Brenner potential function gives CVTST H + CH3 and H + diamond {111} association rate constants which are 159−30 and 49−7 times smaller, respectively, than the values from the MAPS functions. An analysis of the Brenner potential function shows that it inaccurately represents the intermediate and long-range H- - -C association potential, which controls the structure of the variational transition state and the CVTST rate constant. The MAPS functions give H + CH3 and H + diamond {111} variational transition states with similar properties. Angular momentum and external rotation have no effect on the H + diamond {111} association rate constant, which makes it approximately an order-of-magnitude smaller than that for H + CH3 association.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.