Abstract
In vitro drug susceptibility testing with the malaria parasite has been used to assess the antimalarial activities of new compounds and to monitor drug resistance in field isolates. We investigated the validity of a SYBR green I fluorescent-based assay under various culture conditions and compared the assay results to those of previously published histidine-rich protein II (HRPII) enzyme-linked immunosorbent assay (ELISA) methods. Reference strains of Plasmodium falciparum were cultured in vitro by using standard conditions in complete medium with and without phenol red before they were dispensed into 96-well plates predosed with chloroquine, mefloquine, or quinine. Following incubation, the culture supernatants were divided and the 50% inhibitory concentrations (IC50s) were determined by using a SYBR green I-based method and the HRPII capture ELISA method. There were no significant differences in IC50 values when phenol red was included in the medium. The IC50s and the IC90s of the antimalarials tested by both methods were similar or identical for each of the reference strains. Fresh clinical isolates of P. falciparum collected from imported cases of malaria in Lyon, France, were tested for in vitro resistance to chloroquine and mefloquine by using the validated SYBR green I and HRPII ELISA methods. The SYBR green I-based method was able to calculate IC50 and IC90 values similar or identical to those calculated by the HRPII assay with fresh clinical samples without removal of white blood cells. The SYBR green I-based method for determination of drug sensitivity levels produced results comparable to those produced by other methods, showing that this method can be used routinely to conduct surveillance for drug resistance in P. falciparum with fresh or cultured parasites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.