Abstract

This paper investigates the application of time-reversal techniques to the detection and ensonification of a target of interest. The focusing method is based on a generalization of time-reversal operator techniques. A subrank time-reversal operator is derived and implemented using a discrete set of transmission beams to ensonify a region of interest. In a dynamic ocean simulation, target focusing using a subrank matrix is shown to be superior to using a full-rank matrix, specifically when the subrank matrix is captured in a period shorter than the coherence time of the modeled environment. Backscatter from the point target was propagated to a vertical 64-element source-receiver array and processed to form the sub-rank time-reversal operator matrix. The eigenvector corresponding to the strongest eigenvalue of the time-reversal operator was shown to focus energy on the target in simulation. Modeled results will be augmented by a limited at-sea experiment conducted on the New Jersey shelf in April-May 2004 measured low-frequency backscattered signal from an artificial target (echo repeater).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call