Abstract

Although the influence of conventional oil and gas extraction on surface subsidence has been widely recognised and studied, few studies are carried out on the surface subsidence in coal seam gas fields and its impact on surface infrastructure and the environment. In predicting land subsidence caused by coal seam gas extraction, the hydro-mechanical behaviour of geological strata are different and their hydraulic connections to the coal seams are not well-understood, which makes the analytical models are difficult to be applied in the prediction of land subsidence. This paper develops a coupled fluid flow-geomechanical model which can consider the interrelation of fluid flow and geomechanics of the ground. By comparison of dewatering and degassing with typical analytical models including the disc-shaped reservoir model and the uniaxial compaction model, the typical analytical models cannot estimate the potential pressure distribution and predict the real subsidence induced by coal seam gas extraction; however, the coupled fluid flowgeomechanical model is capable of describing the transport properties of coal seam, including water flow, gas flow and desorption and rock deformation. Therefore, the proposed coupled model can be better used in analysis of subsidence of coal seam gas extraction. [Received: April 15, 2017; Accepted: October 17, 2017]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call