Abstract

Dyes often act as the photoinitiator PI/photosensitizer PS in photopolymer materials and are therefore of significant interest. The properties of the PI/PS used strongly influences grating formation when the material layer is exposed holographically. In this paper, the ability of a recently synthesized dye, D_1, to sensitize an acrylamide/polyvinyl alcohol (AA/PVA) based photopolymer is examined, and the material performance is characterized using an extended nonlocal photopolymerization-driven diffusion model. Electron spin resonance spin-trapping (ESR-ST) experiments are also carried out to characterize the generation of the initiator/primary radical, R(•), during exposure. The results obtained are then compared with those for the corresponding situation when using a xanthene dye, i.e., erythrosine B, under the same experiment conditions. The results indicate that the nonlocal effect is greater when this new photosensitizer is used in the material. Analysis indicates that this is the case because of the dye's (D_1) weak absorptivity and the resulting slow rate of primary radical production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.