Abstract

Creep damage of high energy piping (HEP) systems in fossil fuel power plants results from operation at creep range temperatures and high stresses over many years. Typically, the operating stresses in an HEP piping system are substantially below the yield stress. They tend to be load controlled and time dependent. In spring 1999, Arizona Public Service Company performed an examination of several girth welds of a main steam piping system at Cholla Power Station, Unit 2. A significant creep-related crack was found in a weld after 158,000 operating hours. The American Society of Mechanical Engineers (ASME) Subsection NH methodology was used to evaluate the load controlled stress design rules for nuclear Class 1 components in elevated temperature service as applied to this piping system. A high energy piping life consumption (HEPLC) analysis was performed prior to the examination to select and rank the most critical welds. After obtaining critical information during the outage, the software was also used to estimate the life exhaustion at the most critical weld. A discussion of results for the two approaches is provided in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.