Abstract
A novel hybrid of adaptive neuro-fuzzy inference system (ANFIS) and two-dimensional Mamdani fuzzy controller was developed for accurately forecasting the water level at the Three Georges Reservoir during the flood season in China. Using statistical approaches, nine input variables were selected based on the upper water levels in the reservoir and the quantity of interval rainfall. Since rainfall is an important input variable in flood forecasting during the flood season, ANFIS was modified to account for the influence of rainfall. Two sub-models were written, ANFIS 1 with rainfall and ANFIS 2 without rainfall, due to the weak cross-correlation function between the interval rainfall and the forecasted water levels. These two sub-models were trained by adjusting the number of the membership functions and the fuzzy rules. The number of membership functions and fuzzy rules was as selected 5 for ANFIS1, because of the relatively better results obtained based on the evaluation criterion in comparison with the other groups. The two-dimensional Mamdani fuzzy controller was regarded as an updating process for ANFIS forecasting, which controlled the error rate between the observed and forecasted amounts to within 0.05 %. The final forecasted results were acquired through error feedback and proved to be very close to the observed results. These results verified that this novel model has accurate predictive capabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.