Abstract

Interfacial properties of two types of mucins have been investigated at the aqueous solution/poly(methyl methacrylate) (PMMA) interface. One is commercially available bovine submaxillary mucin, BSM, which consists of alternating glycosylated and nonglycosylated regions. The other one is a recombinant mucin-type fusion protein, PSGL-1/mIgG2b, consisting of a glycosylated mucin part fused to the Fc part of an immunoglobulin. PSGL-1/mIgG2b is mainly expressed as a dimer upon production. A quartz crystal microbalance with dissipation was used to study the adsorption of the mucins to PMMA surfaces. The mass of the adsorbed mucin layers, including the adsorbed mucin and water trapped in the layer, was found to be significantly higher for PSGL-1/mIgG2b than for BSM. Atomic force microscopy with colloidal probe was employed to study interactions and frictional forces between mucin-coated PMMA surfaces. Purely repulsive forces of steric origin were observed between PSGL-1/mIgG2b mucin layers, whereas a small adhesion was detected between BSM layers and attributed to bridging. Both mucin layers reduced the friction force between PMMA surfaces in aqueous solution. The reduction was, however, significantly more pronounced for PSGL-1/mIgG2b. The effective friction coefficient between PSGL-1/mIgG2b-coated PMMA surfaces is as low as 0.02 at low loads, increasing to 0.24 at the highest load explored, 50 nN. In contrast, a friction coefficient of around 0.7 was obtained between BSM-coated PMMA surfaces. The large differences in interfacial properties for the two mucins are discussed in relation to their structural differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.