Abstract

Abstract Two 126 level 3-component 3D-VSP's (Vertical Seismic Profiles) were acquired coincident with a high-resolution surface seismic survey. Figure 1 shows the location of the first 3D-VSP on the crest of the field and the second 3D-VSP on the flank of the field. Using the surface seismic sources, 11712 shot points were used per VSP to collect 4.5 million traces per VSP, which produced a 6-9 km² final 3D-VSP image around each of the two wells. Due to the large offsets and high density of traces available it was possible to experiment with acquisition and processing methodologies to produce images that resolve thinner beds, see more structural definition and improve reservoir characterization. Results from the first phase of processing are very encouraging and show the 3D-VSP images to be able to resolve subtle faults that were not seen in older surface seismic data and have higher frequency content than the new 640 fold, high resolution surface seismic data. Source and receiver decimation tests are aiding in efforts to better understand how to acquire high quality 3D-VSP's in the future with minimal effort and cost. Efforts to expand the size of the 3D-VSP volumes around the wells have been successful. The largest image produced so far has been able to image more than 1.5 km away from the wellbore. The high quality VSP images and the fact that VSP's can be repeated at much lower cost than surface seismic makes this technology very attractive for future time-lapse reservoir monitoring studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call