Abstract

The suitability of [18F]FDG, [18F]FLT, [18F]FET, and [18F]FCH as non-invasive positron emission tomography (PET) biomarkers for monitoring response to chemotherapy was analyzed in various experimental tumor models. Tracer uptake into three syngeneic rodent tumor models and ten human xenograft models was evaluated using semiquantitative analysis of small-animal PET data. Murine RIF-1 fibrosarcomas and [18F]FLT were selected to monitor the effects of the novel cytotoxic patupilone. Except [18F]FCH, all tracers provided good tumor visualization. Highest [18F]FDG uptake was identified in syngeneic tumors. Xenograft models, however, showed low [18F]FDG SUVs and were better visualized by [18F]FLT. Monitoring the effects of patupilone on [18F]FLT uptake in RIF-1 tumors revealed a significant decrease of tracer uptake after 24 h, which strongly negatively correlated with apoptosis. [18F]FLT PET of experimental tumors is a viable complement to [18F]FDG for preclinical drug development. [18F]FLT may be an excellent biomarker for patupilone-induced apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call