Abstract

Total cellular proteins from mouse C3H10T1/2 fibroblasts were compared by two-dimensional (2-D) gel electrophoresis after radiolabeling with [35S]methionine (35S-Met) or 14C-amino acids (14C-AA). 35S-Met labeling of protein was three to four times greater than 14C-AA incorporation over a 24 h period. Automated comparative analysis of replicate fluorographs after 6, 12, and 24 h of labeling showed considerable homology between radiolabeling methods. More than 88% percent of 35S-Met and 14C-AA-labeled proteins were common at each time point. However, the total number of 35S-Met-labeled proteins dropped from 6 to 24 h while the number of 14C-AA-labeled proteins increased. Additionally, twenty-one proteins were uniquely labeled by 14C-AA that were not detectable by 35S-Met over the labeling period. Densitometric analysis showed that several 35S-Met and 14C-AA-labeled proteins exhibited time-related differences in radiolabel incorporation while most proteins remained relatively constant. Protein patterns of silver-stained gels from 6 to 24 h were highly registered and showed few qualitative differences. Proteins detected in radiolabeled gels were generally, but not always, found in silver-stained gels. Thus, 35S-Met appears better suited for short-term radiolabeling of cellular protein while more comprehensive labeling of protein occurs with 14C-AA during prolonged incubation of cell cultures under present experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.