Abstract

The geometric structure, energy properties, and electronic properties of the aerogen-bonding interaction formed by C2H4 and NgOX2 (Ng = Kr, Xe; X = F, Cl, Br) have been studied at the B2PLYP-D3(BJ)/ aug-cc-pVTZ (PP) level. Two kinds of aerogen-bonding interactions were observed among the title systems: the σ-hole and the π-hole complexes. The σ-hole aerogen-bonding complex has a binding energy in the range of - 6.29 ~ - 8.17kcal/mol, which is the most stable. The binding energies of C2H4···NgOX2 increased as X = F < Cl < Br and Ng = KrOX2 < XeOX2 for the σ/π-hole aerogen-bonding complexes. The atoms in molecules (AIM), the non-covalent interaction (NCI) index, and the LMO-EDA energy decomposition analysis were adopted to study the nature of the σ/π-hole aerogen-bonding interaction. The results show that the electrostatic term contributes the most to the total interaction energy for the σ/π-hole aerogen-bonding complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.