Abstract

Ordered mesoporous silica, SBA-15 and MCM-41, and three-dimensionally ordered macroporous SiO2 were used as the supports of H4PMo11VO40 heteropolyacid for methacrolein oxidation. The dispersion and structural evolutions of the heteropolyacid along with thermal treatment were investigated. It was found that the heteropolyacid entered the one-dimensional mesoporous channels of SBA-15 and MCM-41, and the crystallization and growth were limited, leading to high dispersion of the heteropolyacid. However, the thermal stability was decreased under high dispersion. The migration of the heteropolyacid was observed to the end of the one-dimensional channels of SBA-15 and the outer surface of MCM-41 with calcination, accompanied by the decomposition of the heteropolyacid and the formation of MoO3. In comparison, the crystallization and growth of heteropolyacid were not limited in the open macropores of three-dimensionally ordered macroporous SiO2. Dispersed particles on the surface of the macropores with size of about 5 nm exhibited a higher thermal stability. The decomposition of the heteropolyacid in the SBA-15 and MCM-41 supported catalysts resulted in the loss of strong acid sites, causing low selectivity to methacrylic acid in methacrolein oxidation. High thermal stability with high exposure of the active sites in the three-dimensionally ordered macroporous SiO2 supported catalyst contributed to the enhancement in the catalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.