Abstract

Heavy metal pollution has become a worldwide problem in aquaculture. We studied copper (Cu2+) accumulation and physiological responses of two red algae Gracilaria lemaneiformis and Gracilaria lichenoides from China under Cu2+ exposure of 0–500 μg/L in concentration. Compared with G. lemaneiformis, G. lichenoides was more capable in accumulating Cu2+, specifically, more Cu2+ on extracellular side (cell wall) than on intracellular side (cytoplasm) and in cell organelles (especially chloroplast, cell nucleus, mitochondria, and ribosome). In addition, G. lichenoides contained more insoluble polysaccharide in cell wall, which might promote the extracellular Cu2+-binding as an efficient barrier against metal toxicity. Conversely, G. lemaneiformis was more vulnerable than G. lichenoides to Cu2+ toxin for decreases in growth, pigment (chlorophyll a, chlorophyll b, phycobiliprotein, and β-carotene) content, and photosynthetic activity. Moreover, more serious oxidative damages in G. lemaneiformis than in G. lichenoides, in accumulation of reactive oxidative species and malondialdehyde, and in electrolyte leakage, because of lower antioxidant enzyme (superoxide dismutase and glutathione reductase) activities. Therefore, G. lichenoides was less susceptible to Cu2+ stress than G. lemaneiformis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call