Abstract
The minimum number of misclassifications achievable with affine hyperplanes on a given set of labeled points is a key quantity in both statistics and computational learning theory. However, determining this quantity exactly is NP-hard, c.f. Hoffgen, Simon and van Horn (1995). Hence, there is a need to find reasonable approximation procedures. This paper introduces two new approaches to approximating the minimum number of misclassifications achievable with affine hyperplanes. Both approaches are modifications of the regression depth method proposed by Rousseeuw and Hubert (1999) for linear regression models. Our algorithms are compared to the existing regression depth algorithm (c.f. Christmann and Rousseeuw, 1999) for various data sets. We also used a support vector machine approach, as proposed by Vapnik (1998), as a reference method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.