Abstract

Barley (Hordeum vulgare L.) is one of the major cereal crops worldwide. It is grown not only to be used as fodder but also for human consumption. Barley grains are a great source of phenolic compounds, which are particularly interesting for their health-promoting antioxidant properties, among other benefits. Two extraction methods, namely ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE), have been optimized and compared by using Box-Behnken design (BBD) to determine both the antioxidant power and the phenolic compound levels of the extracts. Three variables have been assessed based on these designs: solvent composition (% MeOH in water), temperature (°C), and sample-to-solvent ratio (mg sample mL-1 solvent). The solvent composition used and the interaction between the solvent and the temperature were the most significant variables in terms of recovery of phenolic compounds and antioxidant capacity of the extracts. Short extraction times, a high precision level, and good recoveries have been confirmed for both methods. Moreover, they were successfully applied to several samples. Significant differences regarding the level of phenolic compounds and antioxidant power were revealed when analyzing three different barley varieties. Specifically, the amounts of phenolic compounds ranged from 1.08 to 1.81 mg gallic acid equivalent g-1 barley, while their antioxidant capacity ranged from 1.35 to 2.06 mg Trolox equivalent g-1 barley, depending on the barley variety. Finally, MAE was found to be slightly more efficient than UAE, presenting higher levels of phenolic compounds in the extracts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.