Abstract

Alternative propulsion motors have been studied to increase the performance/consumption ratio in vehicles. A solution is the HEVs (hybrid electric vehicles), which are becoming important to the automotive industry. The electric motor BLDC (Brushless Direct Current) has been chosen to integrate the HEVs because of its characteristics, such as silent operation and high efficiency. Therefore, the motor operating principle is important to develop studies and research in automotive industries. The aim of this study is to develop a BLDC mathematical model to obtain the physical dimensions, such as current, voltage and torque through the comparison of the simulation time between existing models in the literature and experimental tests to integrate a virtual vehicle model. Two models are studied in this article, a simple one that approximates the three phases of BDLC motor to one single phase, as in a brushed DC motor, and a model that considers all phases and their commutation. Both models are compared in terms of computational effort and accuracy of the results, and the DC motor was the one that best integrated the vehicle model. Furthermore, an experimental measurement is performed to calibrate the model and it is integrally acquired by an Arduino UNO board, an inexpensive board. All models are implemented in the software Matlab/SimulinkTM where the voltage is the required input and several variables, such as phase current, speed, friction, and torque, can be the output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call