Abstract

Abstract Object grasping and manipulation in humanoid robots depend, for advanced and long lasting performance, on the development of reliable tactile sensors. Materials used for sensor implementation have to be chosen accurately and optimized in order to endow the device with sufficient resilience to endure long lasting grasping tasks. In particular care has to be taken when trying to enhance durability by the use of materials with high shore hardness as this choice can noticeably reduce pressure sensitivity. In this paper, a comparison between two implementations of the fingertip sensor of the humanoid robot iCub is presented by using a raw characterization of the response along a straight line. Prototypes differ in the materials used for the dielectric and protective layers, while maintaining the same capacitive architecture. The relevant result that emerges from the characterization is that the prototype with Soma Foama presents a higher sensitivity compared to the prototype in PDMS, while the second has a higher mechanical strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.