Abstract

The sheet metal bending process is widely used in the automotive industries, and it is actually one of the most important manufacturing processes. The robustness and the reliability of the bending operation, like many other forming operations, depend of several parameters (geometry, material, and process). In this paper, the die radius and the clearance between the punch and the sheet are optimised in order to reduce the maximum bending load and the springback. Two optimization problems are formulated, and three optimization procedures based on the response surface method are proposed and used to find the optimum solutions. Global and local approximations are used to replace the initial optimization problem, which is implicit by an explicit problem, and the optimum is localised using two algorithms: a sequential quadratic programming and an evolution strategies. The objective functions are evaluated experimentally into a limited points number, which are defined using a design of experiments technique. Good results are obtained from the three optimization procedures. The ability of each technique to find the optimal solution is evaluated, and the results show a good agreement between those three methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.