Abstract

Most boosting systems in internal combustion engines utilize ‘pulse turbocharging’ to maximize the energy extraction by the turbine. An internal combustion engine with more than four cylinders has a significant overlap between the exhaust pulses which, unless isolated, can decrease the overall pulse energy and increase the engine pumping loss. Thus, it is advantageous to isolate a set of cylinders and introduce the exhaust gases into two or more turbine entries separately. There are two main types of multiple entry turbines depending on the method of flow division: the twin-entry and the double-entry turbine. In the twin-entry design, each inlet feeds the entire circumference of the rotor leading edge regardless of inlet conditions. In contrast, the double-entry design introduces the flow from each gas inlet into the rotor leading edge through two distinct sectors of the nozzle. This paper compares the performance of a twin and double-entry mixed flow turbine. The turbines were tested at Imperial College for a range of steady-state flow conditions under equal and unequal admission conditions. The performance of the turbines was then evaluated and compared to one another. Based on experimental data, a method to calculate the mass flow under unequal admission from the full admission maps was also developed and validated against the test results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.