Abstract

In the problem of light scattering by ice crystals of cirrus clouds, two exact methods (FDTD – finite difference time domain and DGTD – discontinuous Galerkin time domain) and the physical-optics approximation are used for numerical calculations of the Mueller matrix in the case of ice hexagonal plates and columns. It is shown that for the crystals larger than 10 μm at the wavelength of 0.532 μm the exact methods and physical-optics approximation closely agreed within three diffraction fringes about the centers of the diffraction patterns. As a result, in the case of random orientation of these crystals, the physical-optics approximation provides accuracy 95% for the averaged Mueller matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.